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Abstract 
 

Skin cancer has a high global prevalence, underscoring the need for accurate and efficient early detection 

systems to support screening. This study presents a comparative analysis of DenseNet-201 and Swin 
Transformer for binary classification of malignant and benign skin lesions using the BCN20000 dataset, 

which contains 12,413 dermoscopic images. The proposed workflow includes image preprocessing and 

augmentation, transfer learning-based model training, and evaluation under a 5-fold stratified cross-

validation protocol. Performance is assessed using Accuracy, Precision, Sensitivity (Recall), F1-score, and 

the area under the receiver operating characteristic curve (AUC-ROC). In addition, computational efficiency 

is examined in terms of parameter count, model size, and training time. Across five folds, DenseNet-201 

achieved 88.05% Accuracy, 88.90% Precision, 89.48% Sensitivity, 89.17% F1-score, and 94.73% AUC, 

whereas Swin Transformer achieved 87.42% Accuracy, 89.77% Precision, 87.06% Sensitivity, 88.39% F1-

score, and 94.33% AUC. A paired t-test at α = 0.05 indicated no statistically significant performance 

difference between the two models. Model interpretability was investigated using Grad-CAM for DenseNet-

201 and EigenCAM for Swin Transformer to verify that predictions were driven by lesion-relevant regions. 
Overall, the results suggest that both architectures are suitable candidates for dermoscopic image-based skin 

lesion screening support systems, including teledermatology applications. 

 

Keywords: Skin Cancer, Image Classification, DenseNet-201, Swin Transformer, BCN20000, Grad-CAM, 

EigenCAM 

Abstrak 
 

Kanker kulit memiliki prevalensi global yang tinggi, yang menggarisbawahi kebutuhan akan sistem deteksi 

dini yang akurat dan efisien untuk mendukung skrining. Studi ini menyajikan analisis komparatif DenseNet-

201 dan Swin Transformer untuk klasifikasi biner lesi kulit ganas dan jinak menggunakan dataset 

BCN20000, yang berisi 12.413 gambar dermoskopi. Alur kerja yang diusulkan mencakup pra-pemrosesan 

dan augmentasi gambar, pelatihan model berbasis transfer learning, dan evaluasi di bawah protokol validasi 

silang bertingkat 5-fold. Kinerja dinilai menggunakan Akurasi, Presisi, Sensitivitas (Recall), skor F1, dan 

area di bawah kurva karakteristik operasi penerima (AUC-ROC). Selain itu, efisiensi komputasi diperiksa 

dalam hal jumlah parameter, ukuran model, dan waktu pelatihan. Pada lima lipatan (folds), DenseNet-201 

mencapai Akurasi 88,05%, Presisi 88,90%, Sensitivitas 89,48%, skor F1 89,17%, dan AUC 94,73%, 

sedangkan Swin Transformer mencapai Akurasi 87,42%, Presisi 89,77%, Sensitivitas 87,06%, skor F1 

88,39%, dan AUC 94,33%. Uji t berpasangan pada α = 0,05 menunjukkan tidak ada perbedaan kinerja yang 
signifikan secara statistik antara kedua model tersebut. Interpretasi model diselidiki menggunakan Grad-

CAM untuk DenseNet-201 dan EigenCAM untuk Swin Transformer untuk memverifikasi bahwa prediksi 

didorong oleh wilayah yang relevan dengan lesi. Secara keseluruhan, hasilnya menunjukkan bahwa kedua 

arsitektur tersebut merupakan kandidat yang cocok untuk sistem pendukung skrining lesi kulit berbasis citra 

dermoskopi, termasuk aplikasi teledermatologi. 

 

Kata Kunci: Kanker Kulit, Klasifikasi Gambar, DenseNet-201, Swin Transformer, BCN20000, Grad-CAM, 

EigenCAM 
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INTRODUCTION 

Skin cancer is among the most prevalent malignancies worldwide and may progress 

to advanced disease if not detected at an early stage. Its development is influenced by 

multiple risk factors, including prolonged ultraviolet exposure, genetic predisposition, and 

heterogeneous clinical manifestations. In clinical practice, dermoscopy is commonly used 

to enhance visualization of lesion morphology and subsurface structures. However, 

dermoscopic image interpretation remains dependent on clinician expertise and may be 

subject to inter-observer variability. 

The application of deep learning in medical image analysis, including dermoscopic 

imaging, has increased substantially due to its capacity for automated feature extraction 

and improved classification performance. Convolutional neural network (CNN) 

architectures such as DenseNet-201 have demonstrated strong results across a range of 

medical imaging tasks. DenseNet employs dense connectivity between layers, which 

facilitates stable gradient propagation and promotes efficient feature reuse throughout the 

network. In contrast, transformer-based vision models such as the Swin Transformer 

leverage self-attention mechanisms to capture broader feature dependencies, potentially 

improving robustness and adaptability across diverse imaging conditions. 

Although numerous studies have investigated CNN and transformer-based 

approaches for skin lesion classification, direct comparisons between DenseNet-201 and 

Swin Transformer on real-world dermoscopic datasets such as BCN20000 remain limited. 

The BCN20000 dataset exhibits substantial image variability and more closely reflects 

clinical conditions encountered in practice. Consequently, comparative evaluations are 

required that extend beyond predictive performance to include computational efficiency 

and human-interpretable decision analysis. 

Accordingly, this study makes three main contributions: (1) a systematic 

comparison of DenseNet-201 and Swin Transformer for benign versus malignant skin 

lesion classification on the BCN20000 dataset using a 5-fold stratified cross-validation 

protocol; (2) an assessment of computational efficiency, including model complexity and 

training characteristics, to support feasibility for practical deployment; and (3) an 
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interpretability analysis using Grad-CAM and EigenCAM to visualize lesion-relevant 

regions that drive model predictions. 

RESEARCH METHOD 

This study adopts a computational experimental design to compare two deep 

learning architectures, DenseNet-201 and Swin Transformer, for binary skin lesion 

classification using the BCN20000 dataset. The workflow comprises image preprocessing, 

data partitioning under a 5-fold stratified cross-validation protocol, model training, 

performance evaluation using standard classification metrics, statistical comparison via a 

paired t-test, and interpretability analysis using Grad-CAM and EigenCAM. 

1. Dataset 

This study utilizes the BCN20000 dataset, which comprises dermoscopic images 

representing a wide range of skin lesion conditions. The dataset is formulated as a 

binary classification task with two categories: benign and malignant lesions. 

2. Research Stages 

The study was carried out through sequential stages, including data collection, image 

preprocessing, dataset partitioning, model training, performance evaluation, and 

interpretability analysis. The overall workflow is summarized in Figure 1. 

As illustrated in Figure 1 below, the workflow begins with the acquisition of 

dermoscopic image data, followed by preprocessing to prepare the inputs for model 

development. The dataset is then partitioned into training, validation, and testing 

subsets. During training, data augmentation is applied to increase sample diversity and 

promote model generalization. Finally, classification is performed using DenseNet-201 

and Swin Transformer, and the performance of both models is compared using the 

selected evaluation metrics. 
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Figure 1. Research Design 

3. Preprocessing and Augmentasi 

Preprocessing is performed to ensure that all images conform to the input specifications 

required by the models. This stage includes image resizing, normalization, and other 

necessary transformations. To increase training data diversity and mitigate overfitting, 

data augmentation techniques such as rotation, flipping, and other relevant 

transformations are applied. 

4. Model Architectures 

This study compares two deep learning architectures: 

1) DenseNet-201, a convolutional neural network (CNN) that employs dense inter-

layer connectivity to facilitate efficient feature reuse and stable gradient 

propagation. 
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2) Swin Transformer, a shifted window-based vision transformer that applies 

hierarchical self-attention to capture both local and global feature relationships. 

5. Evaluation Protocol and Metrics 

Model evaluation was performed using a 5-fold stratified cross-validation protocol to 

preserve class proportions within each fold. Performance was assessed using the 

following metrics: 

 Accuracy 

 Precision 

 Sensitivity (Recall) 

 F1-score 

 AUC (Area Under Curve) 

In addition, a paired-sample t-test at α = 0.05 was conducted to determine whether 

performance differences between the two models were statistically significant. 

6. Model Interpretability 

To enhance the transparency of model predictions, interpretability analyses were 

conducted using two visualization techniques: 

 Grad-CAM was applied to DenseNet-201 to highlight image regions that 

contributed most strongly to the predicted class. 

 EigenCAM was applied to the Swin Transformer to generate attention maps 

derived from feature representations, providing insight into regions that influenced 

the model’s decision-making process. 

 

RESULTS AND DISCUSSION 

This section presents the evaluation results of DenseNet-201 and Swin Transformer 

for binary skin lesion classification using the BCN20000 dataset. All experiments were 

conducted under a consistent 5-fold stratified cross-validation protocol to ensure a fair and 

objective comparison between the two models. 

Classification Performance Comparison (Mean 5-Fold) 

A summary of the mean 5-fold results for both models is shown in Table 1. 
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Table 1. Summary of Comparison Results for DenseNet-201 and Swin Transformer 

(Mean 5-Fold) 

Model Accuracy Precision Sensitivity F1-score AUC 

DenseNet-201 88,05% 88,90% 89,48% 89,17% 94,73% 

Swin Transformer 87,42% 89,77% 87,06% 88,39% 94,33% 

 

Based on Table 1, DenseNet-201 achieves higher Accuracy, Sensitivity, F1-

score, and AUC, whereas Swin Transformer attains higher Precision. In clinical 

screening applications, Sensitivity is particularly critical because false-negative 

predictions may result in missed malignant cases and delayed treatment. Although the 

overall performance differences are modest, the higher Sensitivity of DenseNet-201 

suggests that it may be more suitable for screening scenarios that prioritize the 

detection of malignant lesions. 

Computational Efficiency  

Beyond predictive performance, computational efficiency was assessed to evaluate 

the feasibility of deploying each model in practical settings. A comparison of 

computational efficiency between DenseNet-201 and Swin Transformer is presented in 

Table 2. 

Table 2. Comparison of Computational Efficiency between DenseNet-201 and Swin 

Transformer  

NO Efficiency Metric DenseNet-201 Swin Transformer Advantages 

1 
Number of 

Parameters 
±20 million (20M) ±28 million (28M) 

DenseNet 

(40% lighter) 

2 Model File Size 81.1 MB 114 MB 
DenseNet 

(29% smaller) 

3 
Total 5-Fold 

Training Time 
7 hours 20 minutes 6 hours 25 minutes 

Swin Transformer (12.5% 

faster) 

4 Average per Fold 88 minutes 77 minutes 
Swin Transformer (12.5% 

faster) 

 

Table 2 indicates a clear trade-off between the two architectures. DenseNet-201 has 

fewer parameters and a smaller model size, which reduces memory requirements and 
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supports deployment on resource-constrained devices. In contrast, Swin Transformer 

exhibits shorter training time, making it more appropriate for server-based environments 

where retraining efficiency is a priority. 

Paired t-test Statistical Analysis 

To determine whether the observed performance differences between the two 

models were statistically significant, a paired-sample t-test was conducted at a significance 

level of α = 0.05. The results are reported in Table 3. 

Table 3. Results of Paired t-test Comparison between DenseNet-201 and Swin 

Transformer  (α = 0.05) 

Metric t-statistic p-value α Decision Conclusion 

Accuracy 0,5056 0,6397 0,05 p > α Not significant 

Precision -1,1477 0,3151 0,05 p > α Not significant 

Sensitivity 1,0897 0,3371 0,05 p > α Not significant 

F1-score 0,6235 0,5668 0,05 p > α Not significant 

AUC 0,4516 0,6750 0,05 p > α Not significant 

 

As shown in Table 3, all metrics yield p-values greater than 0.05; therefore, the null 

hypothesis (H0) cannot be rejected. This finding indicates that the performance differences 

between DenseNet-201 and Swin Transformer are not statistically significant. 

Consequently, both models can be considered to exhibit comparable performance on the 

BCN20000 dataset under the 5-fold stratified cross-validation protocol. 

DenseNet-201 Evaluation (Best Fold) 

1. DenseNet-201 Confusion Matrix 

To examine classification errors in greater detail, a confusion matrix is used to 

summarize the distribution of correct and incorrect predictions across classes. The 

confusion matrix for DenseNet-201 in the best-performing fold is presented in Figure 

2. 
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Figure 2. DenseNet-201 Confusion Matrix (Best-Performing Fold) 

As shown in Figure 2, DenseNet-201 correctly classified 725 benign samples and 960 

malignant samples. Misclassifications included 112 benign samples predicted as 

malignant (false positives) and 65 malignant samples predicted as benign (false 

negatives). In clinical screening, false-negative errors are particularly critical because 

they may result in missed malignant cases and delayed intervention. Nevertheless, the 

false-negative count in the best-performing fold is lower than the false-positive count, 

indicating that DenseNet-201 maintains adequate sensitivity for malignant lesion 

detection. 

2. DenseNet-201 ROC Curve 

In addition to the confusion matrix, model performance was further evaluated using the 

receiver operating characteristic (ROC) curve, which illustrates the trade-off between 

the true positive rate (TPR) and false positive rate (FPR) across different classification 

thresholds. The ROC curve for DenseNet-201 in the best-performing fold is shown in 

Figure 3. 
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Figure 3. DenseNet-201 ROC Curve (Best-Performing Fold) 

As shown in Figure 3, DenseNet-201 achieves an AUC of 0.962, indicating strong 

discriminative performance in distinguishing malignant from benign skin lesions. The 

ROC curve remains well above the diagonal baseline, demonstrating performance that 

exceeds random classification. 

3. DenseNet-201 Grad-CAM Visualization 

To improve the transparency of model predictions, an interpretability analysis was 

conducted using Grad-CAM on DenseNet-201. This technique highlights image regions 

that contribute most strongly to the model’s classification decisions. 

 

Figure 4. DenseNet-201 Grad-CAM Visualization for Malignant Skin Lesions:  

(a) Example 1, (b) Example 2 
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As shown in Figure 4, regions with the highest activation (red to yellow) are 

concentrated within the lesion core, whereas areas outside the lesion exhibit lower 

activation. This pattern suggests that DenseNet-201 primarily relies on textural and 

structural features within the lesion region when predicting the malignant class. 

In addition, Grad-CAM was applied to benign lesion images to verify that DenseNet-

201 consistently attended to lesion-relevant regions rather than image artifacts or 

background features. 

 

Figure 5. DenseNet-201 Grad-CAM Visualization for Benign Skin Lesions:  

(a) Example 1, (b) Example 2 

As shown in Figure 5, the highest activation regions are concentrated within the lesion 

area, whereas surrounding regions exhibit lower activation. This consistent localization 

indicates that DenseNet-201 primarily focuses on lesion-relevant regions when 

generating benign predictions. 

Swin Transformer Evaluation (Best Fold) 

1. Swin Transformer Confusion Matrix 

To analyze the prediction error patterns of Swin Transformer, a confusion matrix is 

used to summarize the number of correct and incorrect predictions for each class. The 

confusion matrix for Swin Transformer in the best-performing fold is presented in 

Figure 6. 
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Figure 6. Swin Transformer Confusion Matrix (Best-Performing Fold) 

As shown in Figure 6, Swin Transformer correctly classified 749 benign samples and 

911 malignant samples. Misclassifications included 88 benign samples predicted as 

malignant (false positives) and 114 malignant samples predicted as benign (false 

negatives). Compared with DenseNet-201 in the best-performing fold, Swin 

Transformer produced fewer false positives but a higher number of false negatives. 

2. Swin Transformer ROC Curve 

The receiver operating characteristic (ROC) curve is used to illustrate the trade-off 

between the true positive rate (TPR) and false positive rate (FPR) across different 

classification thresholds. The ROC curve for Swin Transformer in the best-performing 

fold is shown in Figure 7. 
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Figure 7. Swin Transformer ROC Curve (Best-Performing Fold) 

As shown in Figure 7, Swin Transformer achieves an AUC of 0.953, indicating strong 

discriminative performance. The ROC curve remains well above the diagonal baseline, 

demonstrating performance that exceeds random classification. 

3. Swin Transformer EigenCAM Visualization 

The interpretability of Swin Transformer was examined using EigenCAM to generate 

attention maps that highlight image regions contributing to the model’s predictions. 

 

Figure 8. Swin Transformer EigenCAM Visualization for Malignant Skin Lesions:  

(a) Example 1, (b) Example 2 
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As shown in Figure 8, the EigenCAM activation maps indicate that the model attends 

to the lesion region as well as surrounding structures. The broader activation pattern is 

consistent with the self-attention mechanism of Swin Transformer, which captures 

feature relationships over a wider spatial context. 

In addition, EigenCAM was applied to benign lesion images to verify that Swin 

Transformer consistently focused on lesion-relevant regions rather than background 

features. 

 

Figure 9. Swin Transformer EigenCAM Visualization for Benign Skin Lesions:  

(a) Example 1, (b) Example 2 

As shown in Figure 9, model attention is primarily directed toward lesion regions that 

exhibit contrast relative to surrounding normal skin. This pattern suggests that Swin 

Transformer leverages both local lesion characteristics and broader contextual 

information to generate benign class predictions. 

DenseNet-201 and Swin Transformer Comparison 

1. Interpretability Comparison 

Overall, Grad-CAM visualizations for DenseNet-201 (Figures 4 and 5) exhibit more 

localized activation concentrated within the lesion core, whereas EigenCAM 

visualizations for Swin Transformer (Figures 8 and 9) tend to display broader attention 

that encompasses both the lesion region and surrounding context. This difference is 

consistent with architectural characteristics: CNNs primarily emphasize local feature 
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extraction through convolutional operations, while transformer-based models employ 

self-attention mechanisms to capture feature dependencies over a wider spatial extent. 

2. ROC Comparison (Best-Performing Fold) 

DenseNet-201 achieved an AUC of 0.962 in the best-performing fold (Figure 3), 

whereas Swin Transformer achieved an AUC of 0.953 (Figure 7). This difference 

indicates that DenseNet-201 provides slightly higher discriminative capability in the 

best fold, although both models demonstrate high overall performance. 

3. Error Pattern Analysis 

Based on the confusion matrices from the best-performing folds, DenseNet-201 

produced 65 false negatives (FN) and 112 false positives (FP), while Swin Transformer 

produced 114 FN and 88 FP. DenseNet-201 yields fewer false negatives, which is 

advantageous for screening settings that prioritize minimizing missed malignant cases. 

In contrast, Swin Transformer produces fewer false positives, suggesting greater 

selectivity and potential benefits in reducing false alarms and unnecessary referrals. 

 

CONCLUSIONS AND RECOMMENDATIONS 

This study compares DenseNet-201 and Swin Transformer for malignant versus 

benign skin lesion classification using the BCN20000 dataset under a 5-fold stratified 

cross-validation protocol. DenseNet-201 achieved 88.05% Accuracy, 88.90% Precision, 

89.48% Sensitivity, 89.17% F1-score, and 94.73% AUC, whereas Swin Transformer 

achieved 87.42% Accuracy, 89.77% Precision, 87.06% Sensitivity, 88.39% F1-score, and 

94.33% AUC. Computational efficiency analysis indicates that DenseNet-201 is more 

suitable for deployment due to its smaller model size, while Swin Transformer requires 

less training time. A paired t-test at α = 0.05 shows that performance differences between 

the two models are not statistically significant, indicating that both architectures are viable 

candidates for skin lesion screening support systems. Error pattern analysis on the best-

performing fold further shows that DenseNet-201 produces fewer false negatives, 

supporting screening scenarios that prioritize minimizing missed malignant cases, whereas 

Swin Transformer produces fewer false positives, which may reduce false alarms. Future 

work should include external validation on additional datasets, the application of more 
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adaptive class imbalance handling strategies, and the exploration of ensemble or hybrid 

CNN–Transformer approaches to improve performance stability and generalization. 
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