Jurnal Teknlogi Informatika dan Komputer MH. Thamrin p-ISSN 2656-9957; e-ISSN 2622-8475
Volume 12 No 1; Maret 2026

A Comparative Study of DenseNet-201 and Swin Transformer for
Malignant and Benign Skin Lesion Classification

Dahlan Hidayat?, Ahmad Musyafa?”, Murni Handayani ¥

V23)Teknik Informatika S-2, Program Pascasarjana, Universitas Pamulang
“Correspondence author: dosen00668@unpam.ac.id, Tangerang Selatan, Indonesia
DOI: https://doi.org/10.37012/jtik.v12i1.3265

Abstract

Skin cancer has a high global prevalence, underscoring the need for accurate and efficient early detection
systems to support screening. This study presents a comparative analysis of DenseNet-201 and Swin
Transformer for binary classification of malignant and benign skin lesions using the BCN20000 dataset,
which contains 12,413 dermoscopic images. The proposed workflow includes image preprocessing and
augmentation, transfer learning-based model training, and evaluation under a 5-fold stratified cross-
validation protocol. Performance is assessed using Accuracy, Precision, Sensitivity (Recall), F1-score, and
the area under the receiver operating characteristic curve (AUC-ROC). In addition, computational efficiency
is examined in terms of parameter count, model size, and training time. Across five folds, DenseNet-201
achieved 88.05% Accuracy, 88.90% Precision, 89.48% Sensitivity, 89.17% F1-score, and 94.73% AUC,
whereas Swin Transformer achieved 87.42% Accuracy, 89.77% Precision, 87.06% Sensitivity, 88.39% F1-
score, and 94.33% AUC. A paired t-test at oo = 0.05 indicated no statistically significant performance
difference between the two models. Model interpretability was investigated using Grad-CAM for DenseNet-
201 and EigenCAM for Swin Transformer to verify that predictions were driven by lesion-relevant regions.
Overall, the results suggest that both architectures are suitable candidates for dermoscopic image-based skin
lesion screening support systems, including teledermatology applications.

Keywords: Skin Cancer, Image Classification, DenseNet-201, Swin Transformer, BCN20000, Grad-CAM,
EigenCAM

Abstrak

Kanker kulit memiliki prevalensi global yang tinggi, yang menggarisbawahi kebutuhan akan sistem deteksi
dini yang akurat dan efisien untuk mendukung skrining. Studi ini menyajikan analisis komparatif DenseNet-
201 dan Swin Transformer untuk Kklasifikasi biner lesi kulit ganas dan jinak menggunakan dataset
BCN20000, yang berisi 12.413 gambar dermoskopi. Alur kerja yang diusulkan mencakup pra-pemrosesan
dan augmentasi gambar, pelatihan model berbasis transfer learning, dan evaluasi di bawah protokol validasi
silang bertingkat 5-fold. Kinerja dinilai menggunakan Akurasi, Presisi, Sensitivitas (Recall), skor F1, dan
area di bawah kurva karakteristik operasi penerima (AUC-ROC). Selain itu, efisiensi komputasi diperiksa
dalam hal jumlah parameter, ukuran model, dan waktu pelatihan. Pada lima lipatan (folds), DenseNet-201
mencapai Akurasi 88,05%, Presisi 88,90%, Sensitivitas 89,48%, skor F1 89,17%, dan AUC 94,73%,
sedangkan Swin Transformer mencapai Akurasi 87,42%, Presisi 89,77%, Sensitivitas 87,06%, skor F1
88,39%, dan AUC 94,33%. Uji t berpasangan pada o = 0,05 menunjukkan tidak ada perbedaan kinerja yang
signifikan secara statistik antara kedua model tersebut. Interpretasi model diselidiki menggunakan Grad-
CAM untuk DenseNet-201 dan EigenCAM untuk Swin Transformer untuk memverifikasi bahwa prediksi
didorong oleh wilayah yang relevan dengan lesi. Secara keseluruhan, hasilnya menunjukkan bahwa kedua
arsitektur tersebut merupakan kandidat yang cocok untuk sistem pendukung skrining lesi kulit berbasis citra
dermoskopi, termasuk aplikasi teledermatologi.

Kata Kunci: Kanker Kulit, Klasifikasi Gambar, DenseNet-201, Swin Transformer, BCN20000, Grad-CAM,
EigenCAM
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INTRODUCTION

Skin cancer is among the most prevalent malignancies worldwide and may progress

to advanced disease if not detected at an early stage. Its development is influenced by
multiple risk factors, including prolonged ultraviolet exposure, genetic predisposition, and
heterogeneous clinical manifestations. In clinical practice, dermoscopy is commonly used
to enhance visualization of lesion morphology and subsurface structures. However,
dermoscopic image interpretation remains dependent on clinician expertise and may be
subject to inter-observer variability.

The application of deep learning in medical image analysis, including dermoscopic
imaging, has increased substantially due to its capacity for automated feature extraction
and improved classification performance. Convolutional neural network (CNN)
architectures such as DenseNet-201 have demonstrated strong results across a range of
medical imaging tasks. DenseNet employs dense connectivity between layers, which
facilitates stable gradient propagation and promotes efficient feature reuse throughout the
network. In contrast, transformer-based vision models such as the Swin Transformer
leverage self-attention mechanisms to capture broader feature dependencies, potentially
improving robustness and adaptability across diverse imaging conditions.

Although numerous studies have investigated CNN and transformer-based
approaches for skin lesion classification, direct comparisons between DenseNet-201 and
Swin Transformer on real-world dermoscopic datasets such as BCN20000 remain limited.
The BCN20000 dataset exhibits substantial image variability and more closely reflects
clinical conditions encountered in practice. Consequently, comparative evaluations are
required that extend beyond predictive performance to include computational efficiency
and human-interpretable decision analysis.

Accordingly, this study makes three main contributions: (1) a systematic
comparison of DenseNet-201 and Swin Transformer for benign versus malignant skin
lesion classification on the BCN20000 dataset using a 5-fold stratified cross-validation
protocol; (2) an assessment of computational efficiency, including model complexity and

training characteristics, to support feasibility for practical deployment; and (3) an

https://journal.thamrin.ac.id/index.php/jtik/article/view/3265/2753 170



https://journal.thamrin.ac.id/index.php/jtik/article/view/3265/2753

Jurnal Teknlogi Informatika dan Komputer MH. Thamrin p-ISSN 2656-9957; e-ISSN 2622-8475
Volume 12 No 1; Maret 2026

interpretability analysis using Grad-CAM and EigenCAM to visualize lesion-relevant

regions that drive model predictions.

RESEARCH METHOD
This study adopts a computational experimental design to compare two deep
learning architectures, DenseNet-201 and Swin Transformer, for binary skin lesion
classification using the BCN20000 dataset. The workflow comprises image preprocessing,
data partitioning under a 5-fold stratified cross-validation protocol, model training,
performance evaluation using standard classification metrics, statistical comparison via a
paired t-test, and interpretability analysis using Grad-CAM and EigenCAM.
1. Dataset
This study utilizes the BCN20000 dataset, which comprises dermoscopic images
representing a wide range of skin lesion conditions. The dataset is formulated as a
binary classification task with two categories: benign and malignant lesions.
2. Research Stages
The study was carried out through sequential stages, including data collection, image
preprocessing, dataset partitioning, model training, performance evaluation, and

interpretability analysis. The overall workflow is summarized in Figure 1.

As illustrated in Figure 1 below, the workflow begins with the acquisition of
dermoscopic image data, followed by preprocessing to prepare the inputs for model
development. The dataset is then partitioned into training, validation, and testing
subsets. During training, data augmentation is applied to increase sample diversity and
promote model generalization. Finally, classification is performed using DenseNet-201
and Swin Transformer, and the performance of both models is compared using the

selected evaluation metrics.

https://journal.thamrin.ac.id/index.php/jtik/article/view/3265/2753 7



https://journal.thamrin.ac.id/index.php/jtik/article/view/3265/2753

Jurnal Teknlogi Informatika dan Komputer MH. Thamrin p-ISSN 2656-9957; e-ISSN 2622-8475

Volume 12 No 1; Maret 2026

PENGUMPULAN DATA

l

PREPROCESSING DATA

l

MEMBAGI DATASET
(VALIDASI, TRAINING, TESTING)

l

TRAINING DATA

l

AUGMENTASI DATA

]

‘ PROSES KLASIFIKASI

e

,
J‘ Ty Ty

VALIDASI DATA } TESTING DATA

y

L W
Ty

MENGGUNAKAN MODEL
DENSEMET-201 DAN SWIN
TRANSFORMER

|

[ MEMBANDINGKAN KINERJA w

[

HASIL KLASIFIKASI MODEL
DENSENET-201 DAN SWIN
TRANSFORMER

Figure 1. Research Design

3. Preprocessing and Augmentasi
Preprocessing is performed to ensure that all images conform to the input specifications
required by the models. This stage includes image resizing, normalization, and other
necessary transformations. To increase training data diversity and mitigate overfitting,
data augmentation techniques such as rotation, flipping, and other relevant
transformations are applied.

4. Model Architectures
This study compares two deep learning architectures:
1) DenseNet-201, a convolutional neural network (CNN) that employs dense inter-

layer connectivity to facilitate efficient feature reuse and stable gradient

propagation.
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2) Swin Transformer, a shifted window-based vision transformer that applies

hierarchical self-attention to capture both local and global feature relationships.
5. Evaluation Protocol and Metrics
Model evaluation was performed using a 5-fold stratified cross-validation protocol to
preserve class proportions within each fold. Performance was assessed using the
following metrics:
e Accuracy
e Precision
e Sensitivity (Recall)
e Fl-score
e AUC (Area Under Curve)
In addition, a paired-sample t-test at a = 0.05 was conducted to determine whether
performance differences between the two models were statistically significant.
6. Model Interpretability
To enhance the transparency of model predictions, interpretability analyses were
conducted using two visualization techniques:
e Grad-CAM was applied to DenseNet-201 to highlight image regions that
contributed most strongly to the predicted class.
e EigenCAM was applied to the Swin Transformer to generate attention maps
derived from feature representations, providing insight into regions that influenced

the model’s decision-making process.

RESULTS AND DISCUSSION

This section presents the evaluation results of DenseNet-201 and Swin Transformer
for binary skin lesion classification using the BCN20000 dataset. All experiments were
conducted under a consistent 5-fold stratified cross-validation protocol to ensure a fair and
objective comparison between the two models.
Classification Performance Comparison (Mean 5-Fold)

A summary of the mean 5-fold results for both models is shown in Table 1.
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Table 1. Summary of Comparison Results for DenseNet-201 and Swin Transformer
(Mean 5-Fold)

Model Accuracy Precision Sensitivity F1-score AUC
DenseNet-201 88,05% 88,90% 89,48% 89,17% 94,73%
Swin Transformer 87,42% 89,77% 87,06% 88,39% 94,33%

Based on Table 1, DenseNet-201 achieves higher Accuracy, Sensitivity, F1-
score, and AUC, whereas Swin Transformer attains higher Precision. In clinical
screening applications, Sensitivity is particularly critical because false-negative
predictions may result in missed malignant cases and delayed treatment. Although the
overall performance differences are modest, the higher Sensitivity of DenseNet-201
suggests that it may be more suitable for screening scenarios that prioritize the
detection of malignant lesions.

Computational Efficiency

Beyond predictive performance, computational efficiency was assessed to evaluate
the feasibility of deploying each model in practical settings. A comparison of
computational efficiency between DenseNet-201 and Swin Transformer is presented in
Table 2.

Table 2. Comparison of Computational Efficiency between DenseNet-201 and Swin

Transformer
NO  Efficiency Metric DenseNet-201 Swin Transformer Advantages
Number of - - DenseNet
+ +
1 Parameters +20 million (20M) +28 million (28M) (40% lighter)
A DenseNet
2 Model File S 81.1 MB 114 MB
odel e oize (29% smaller)
- 1 0,
3 To.ta.l ° Fgld 7 hours 20 minutes 6 hours 25 minutes Swin Transformer (12.5%
Training Time faster)
1 0,
4 Average per Fold 88 minutes 77 minutes Swin Tranfzit:;rrr;er (12.5%

Table 2 indicates a clear trade-off between the two architectures. DenseNet-201 has

fewer parameters and a smaller model size, which reduces memory requirements and
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supports deployment on resource-constrained devices. In contrast, Swin Transformer
exhibits shorter training time, making it more appropriate for server-based environments
where retraining efficiency is a priority.
Paired t-test Statistical Analysis

To determine whether the observed performance differences between the two
models were statistically significant, a paired-sample t-test was conducted at a significance
level of o = 0.05. The results are reported in Table 3.

Table 3. Results of Paired t-test Comparison between DenseNet-201 and Swin

Transformer (a = 0.05)

Metric t-statistic p-value o Decision Conclusion
Accuracy 0,5056 0,6397 0,05 p>a Not significant
Precision -1,1477 0,3151 0,05 p>a Not significant
Sensitivity 1,0897 0,3371 0,05 p>a Not significant
Fl1-score 0,6235 0,5668 0,05 p>a Not significant

AUC 0,4516 0,6750 0,05 p>a Not significant

As shown in Table 3, all metrics yield p-values greater than 0.05; therefore, the null
hypothesis (HO) cannot be rejected. This finding indicates that the performance differences
between DenseNet-201 and Swin Transformer are not statistically significant.
Consequently, both models can be considered to exhibit comparable performance on the
BCN20000 dataset under the 5-fold stratified cross-validation protocol.

DenseNet-201 Evaluation (Best Fold)

1. DenseNet-201 Confusion Matrix
To examine classification errors in greater detail, a confusion matrix is used to
summarize the distribution of correct and incorrect predictions across classes. The
confusion matrix for DenseNet-201 in the best-performing fold is presented in Figure
2.
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Figure 2. DenseNet-201 Confusion Matrix (Best-Performing Fold)
As shown in Figure 2, DenseNet-201 correctly classified 725 benign samples and 960
malignant samples. Misclassifications included 112 benign samples predicted as
malignant (false positives) and 65 malignant samples predicted as benign (false
negatives). In clinical screening, false-negative errors are particularly critical because
they may result in missed malignant cases and delayed intervention. Nevertheless, the
false-negative count in the best-performing fold is lower than the false-positive count,
indicating that DenseNet-201 maintains adequate sensitivity for malignant lesion
detection.
2. DenseNet-201 ROC Curve

In addition to the confusion matrix, model performance was further evaluated using the
receiver operating characteristic (ROC) curve, which illustrates the trade-off between
the true positive rate (TPR) and false positive rate (FPR) across different classification
thresholds. The ROC curve for DenseNet-201 in the best-performing fold is shown in
Figure 3.
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Figure 3. DenseNet-201 ROC Curve (Best-Performing Fold)
As shown in Figure 3, DenseNet-201 achieves an AUC of 0.962, indicating strong

discriminative performance in distinguishing malignant from benign skin lesions. The

ROC curve remains well above the diagonal baseline, demonstrating performance that

exceeds random classification.

3. DenseNet-201 Grad-CAM Visualization

To improve the transparency of model predictions, an interpretability analysis was
conducted using Grad-CAM on DenseNet-201. This technique highlights image regions

that contribute most strongly to the model’s classification decisions.

(a)

(b)

Figure 4. DenseNet-201 Grad-CAM Visualization for Malignant Skin Lesions:

(a) Example 1, (b) Example 2
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As shown in Figure 4, regions with the highest activation (red to yellow) are

concentrated within the lesion core, whereas areas outside the lesion exhibit lower
activation. This pattern suggests that DenseNet-201 primarily relies on textural and
structural features within the lesion region when predicting the malignant class.

In addition, Grad-CAM was applied to benign lesion images to verify that DenseNet-
201 consistently attended to lesion-relevant regions rather than image artifacts or

background features.

(a) (b)

Figure 5. DenseNet-201 Grad-CAM Visualization for Benign Skin Lesions:
(a) Example 1, (b) Example 2
As shown in Figure 5, the highest activation regions are concentrated within the lesion
area, whereas surrounding regions exhibit lower activation. This consistent localization
indicates that DenseNet-201 primarily focuses on lesion-relevant regions when

generating benign predictions.

Swin Transformer Evaluation (Best Fold)

1. Swin Transformer Confusion Matrix
To analyze the prediction error patterns of Swin Transformer, a confusion matrix is
used to summarize the number of correct and incorrect predictions for each class. The
confusion matrix for Swin Transformer in the best-performing fold is presented in

Figure 6.
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Figure 6. Swin Transformer Confusion Matrix (Best-Performing Fold)
As shown in Figure 6, Swin Transformer correctly classified 749 benign samples and
911 malignant samples. Misclassifications included 88 benign samples predicted as
malignant (false positives) and 114 malignant samples predicted as benign (false
negatives). Compared with DenseNet-201 in the best-performing fold, Swin

Transformer produced fewer false positives but a higher number of false negatives.

2. Swin Transformer ROC Curve
The receiver operating characteristic (ROC) curve is used to illustrate the trade-off
between the true positive rate (TPR) and false positive rate (FPR) across different
classification thresholds. The ROC curve for Swin Transformer in the best-performing

fold is shown in Figure 7.
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Figure 7. Swin Transformer ROC Curve (Best-Performing Fold)
As shown in Figure 7, Swin Transformer achieves an AUC of 0.953, indicating strong
discriminative performance. The ROC curve remains well above the diagonal baseline,
demonstrating performance that exceeds random classification.
3. Swin Transformer EigenCAM Visualization
The interpretability of Swin Transformer was examined using EigenCAM to generate

attention maps that highlight image regions contributing to the model’s predictions.

(a) (b)

Figure 8. Swin Transformer EigenCAM Visualization for Malignant Skin Lesions:

(a) Example 1, (b) Example 2
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As shown in Figure 8, the EigenCAM activation maps indicate that the model attends

to the lesion region as well as surrounding structures. The broader activation pattern is
consistent with the self-attention mechanism of Swin Transformer, which captures
feature relationships over a wider spatial context.

In addition, EigenCAM was applied to benign lesion images to verify that Swin
Transformer consistently focused on lesion-relevant regions rather than background

features.

(a) (b)

Figure 9. Swin Transformer EigenCAM Visualization for Benign Skin Lesions:
(a) Example 1, (b) Example 2
As shown in Figure 9, model attention is primarily directed toward lesion regions that
exhibit contrast relative to surrounding normal skin. This pattern suggests that Swin

Transformer leverages both local lesion characteristics and broader contextual

information to generate benign class predictions.

DenseNet-201 and Swin Transformer Comparison

1. Interpretability Comparison
Overall, Grad-CAM visualizations for DenseNet-201 (Figures 4 and 5) exhibit more

localized activation concentrated within the lesion core, whereas EigenCAM
visualizations for Swin Transformer (Figures 8 and 9) tend to display broader attention
that encompasses both the lesion region and surrounding context. This difference is

consistent with architectural characteristics: CNNs primarily emphasize local feature
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self-attention mechanisms to capture feature dependencies over a wider spatial extent.

2. ROC Comparison (Best-Performing Fold)
DenseNet-201 achieved an AUC of 0.962 in the best-performing fold (Figure 3),
whereas Swin Transformer achieved an AUC of 0.953 (Figure 7). This difference
indicates that DenseNet-201 provides slightly higher discriminative capability in the
best fold, although both models demonstrate high overall performance.

3. Error Pattern Analysis
Based on the confusion matrices from the best-performing folds, DenseNet-201
produced 65 false negatives (FN) and 112 false positives (FP), while Swin Transformer
produced 114 FN and 88 FP. DenseNet-201 yields fewer false negatives, which is
advantageous for screening settings that prioritize minimizing missed malignant cases.
In contrast, Swin Transformer produces fewer false positives, suggesting greater

selectivity and potential benefits in reducing false alarms and unnecessary referrals.

CONCLUSIONS AND RECOMMENDATIONS

This study compares DenseNet-201 and Swin Transformer for malignant versus
benign skin lesion classification using the BCN20000 dataset under a 5-fold stratified
cross-validation protocol. DenseNet-201 achieved 88.05% Accuracy, 88.90% Precision,
89.48% Sensitivity, 89.17% F1-score, and 94.73% AUC, whereas Swin Transformer
achieved 87.42% Accuracy, 89.77% Precision, 87.06% Sensitivity, 88.39% F1-score, and
94.33% AUC. Computational efficiency analysis indicates that DenseNet-201 is more
suitable for deployment due to its smaller model size, while Swin Transformer requires
less training time. A paired t-test at a = 0.05 shows that performance differences between
the two models are not statistically significant, indicating that both architectures are viable
candidates for skin lesion screening support systems. Error pattern analysis on the best-
performing fold further shows that DenseNet-201 produces fewer false negatives,
supporting screening scenarios that prioritize minimizing missed malignant cases, whereas
Swin Transformer produces fewer false positives, which may reduce false alarms. Future

work should include external validation on additional datasets, the application of more
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adaptive class imbalance handling strategies, and the exploration of ensemble or hybrid
CNN-Transformer approaches to improve performance stability and generalization.
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